Hansenula polymorpha pex11 cells are affected in peroxisome retention
نویسندگان
چکیده
منابع مشابه
Chapter 1 General introduction: Peroxisome homeostasis in Hansenula polymorpha
Peroxisomes are essential organelles in many eukaryotes. Until recently, the main focus of the investigations concerning this important organelle was to understand the biogenesis of the peroxisome (induction, proliferation and matrix protein import). However, when peroxisomes become redundant they are quickly degraded by highly selective processes known as pexophagy. The first molecular studies...
متن کاملPeroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-d...
متن کاملHansenula polymorpha Tup1p is important for peroxisome degradation.
In the yeast Hansenula polymorpha peroxisomes are selectively degraded upon a shift of cells from methanol to glucose-containing media. We identified the H. polymorpha TUP1 gene by functional complementation of the peroxisome degradation deficient mutant pdd2-4. Tup1 proteins function in transcriptional repression of specific sets of genes involved in various cellular processes. Our combined da...
متن کاملPexophagy in Hansenula polymorpha.
In the yeast Hansenula polymorpha the development and turnover of peroxisomes is readily achieved by manipulation of the cultivation conditions. The organelles massively develop when the cells are incubated in the presence of methanol as the sole source of carbon and energy. However, they are rapidly and selectively degraded when methanol-grown cells are placed at conditions of repression of me...
متن کاملHansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact.
We have cloned the Hansenula polymorpha PEX1 and PEX6 genes by functional complementation of the corresponding peroxisome-deficient (pex) mutants. The gene products, HpPex1p and HpPex6p, are ATPases which both belong to the AAA protein family. Cells deleted for either gene (Deltapex1 or Deltapex6) were characterized by the presence of small peroxisomal remnants which contained peroxisomal membr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Journal
سال: 2009
ISSN: 1742-464X
DOI: 10.1111/j.1742-4658.2009.06883.x